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ABSTRACT 

Black holes seem to play a key role in the universe, powering a wide variety of phenomena, from 

X-ray binaries to active galactic nuclei. Black holes, an extreme consequence of the mathematics 

of General Relativity, have long been suspected of being the prime movers of quasars, which emit 

more energy than any other objects in the Universe. Black holes are a prediction of Einstein’s 

theory of gravity, foreshadowed by the work of Michell and later Laplace in the late 18th century. 

K. Schwarzschild discovered the simplest kind of black hole in the first solution of Einstein’s 

equations of General Relativity, and Oppenheimer was among the first to consider the possibility 

that black holes might actually form in nature. The subject gained life in the 1960s and 70s, when 

supermassive black holes were implicated as the powerhouses for quasars and stellar–mass black 

holes were touted as the engines for many galactic X–ray sources. In the last decade, we have 

progressed from seeking supermassive black holes in only the most energetic astrophysical 

contexts, to suspecting that they may be routinely present at the centers of galaxies. This present 

paper presents a theoretical way to analyze the effect of a Stellar Black Hole, on its host galaxies. 

A two-dimensional, mass dependent gravitational bodies will be brought in the vicinity of a stellar 

black hole and the effect on these bodies will be observed. Even though the possibility of such an 

event is formidable, it is essential to do these simulations to test the drive of humanity for deep 

space exploration. Recent evidence indicates that supermassive black holes, which are probably 

quasar remnants, reside at the centers of most galaxies. As our knowledge of the demographics of 

these relics of a violent earlier Universe improve, we see tantalizing clues that they participated 

intimately in the formation of galaxies and have strongly influenced their present–day structure. 

 

Keywords: Universe, X-Ray, Black Holes, Stellar–Mass, Galaxies, Gravitational, General 

Relativity, Quasars, Astrophysical, Demographics. 
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Chapter 1: Introduction 

1.1 Origin of Theory on Black hole 

 

Newton’s Law of Gravitation states that the escape velocity ʋ, from a distance r from the center of 

gravity of a heavy object with mass m, is given by  

 1

2
 𝑣2  =

𝐺 𝑚 

𝑟
 (1.1) 

John Mitchell in 1783, inquired of himself what happens if a body with a large mass m is 

compressed so much that the escape velocity from its surface would exceed that of light, or, v > 

c? Are there bodies with a mass m and radius R such that?  

2𝐺 𝑚

𝑅 𝑐2
 ≥ 1 (1.2) 

Pierre Simon de Laplace in 1796, further investigated the path of a ray of light when travelling in 

the vicinity of such object? It was a general notion that light cannot escape to infinity. Owing to 

the wave nature of the light it was concluded that light might be able to travel to infinity. The 

formation process for the low mass Black Hole is not known, and also no scientific observation 

has ever been made, indicating the existence of a Black Hole having a mass lower than the 

“Chandrasekhar Limit”. This raises the question about the existence of lighter Black Holes 

anywhere in the universe. It is here that one could ponder about every one of those basic 

suppositions that underlie the hypothesis of quantum mechanics, which is the fundamental 

structure on which all nuclear and sub-nuclear procedures known give off an impression of being 

based. Quantum mechanics depends on the presumption that each physically permitted 

arrangement must be incorporated as partaking in a quantum procedure. Inability to consider 

would essentially prompt conflicting outcomes. Smaller than expected Black Holes are surely 

physically permitted, regardless of whether we don't know how they can be framed. They can be 

framed on a basic level. 
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1.2 Introduction to General Relativity 

Numerous attempts have been made to bring down the complexity of the General Relativity to the 

non-experts in the field of Relativistic Mechanics. These can be traced to museum displays of 

rolling a ball around on a bended surface, to explanations that are numerically very overwhelming. 

It was famously stated by physicist John Wheeler, “Space tells matter how to move and matter 

tells space how to curve”. After demonstrating the deviation in the path of light in the vicinity of 

gravitational force of a comparatively lighter weight body, Albert Einstein in 1915, published his 

General Theory of Relativity. Solution to Einstein’s field equations describing the gravitational 

field of a point mass and a spherical mass was put forward by Karl Schwarzschild, only few months 

from the publication of General Theory of Relativity. A few months after Schwarzschild, Johannes 

Droste, a student of Hendrik Lorentz, independently gave the same solution for the point mass and 

wrote more extensively about its properties. This solution had an impossible to miss solution at 

what is currently called the Schwarzschild radius, where it ended up being singular, implying that 

a portion of the terms in the Einstein conditions wound up becoming infinite. The idea of this 

surface was not exactly comprehended at the time. In 1924, Arthur Eddington demonstrated that 

the singularity vanished after performing a change of co-ordinate system, despite the fact that it 

took until 1933 for Georges Lemaître to understand, that this implied the singularity at the 

Schwarzschild range was a non-physical co-ordinate system peculiarity. 

Arthur Eddington did however remarked on the likelihood of a star with mass compacted to the 

Schwarzschild radius in a 1926 book, taking note of that Einstein's hypothesis enables us to 

discount excessively extensive densities for unmistakable stars like Betelgeuse in light of the fact 

that a star of 250 million km span couldn't in any way, shape or form have so high a thickness as 

the sun. Right off the bat, the power of attractive energy would be great to the point that light 

would be not able escape from it, the beams falling back to the star like a stone to the earth. Also, 

the red shift of the phantom lines would be great to the point that the range would be moved out 

of presence. Thirdly, the mass would create such a great amount of ebb and flow of the space-time 

metric that space would curve around the sun. 

Subrahmanyan Chandrasekhar in 1931 calculated that a non-rotating body of electron-degenerate 

matter above a certain limiting mass has no stable solutions. Oppenheimer and his co-creators 

translated the peculiarity at the limit of the Schwarzschild radius as demonstrating this was the 

limit of a bubble in which time ceased. This is a substantial perspective for external observers, yet 

not for infalling eyewitnesses. On account of this property, the crumbled stars were called 
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"solidified stars", on the grounds that an outside spectator would see the surface of the star 

solidified in time at the moment where its fall takes it to the Schwarzschild radius. 

1.3 Properties and structure 

According to the no-hair theorem, mass, charge, and angular momentum are the only three 

independent physical properties a black hole has once it achieves a stable condition after formation. 

Black holes having same values for these properties, or parameters, are indistinguishable according 

to classical (i.e. non-quantum) mechanics. The thing that makes these properties special is the fact 

that they are visible only from outside of a black hole. As a charged black hole repels other like 

charges just like any other charged object. Gravitational analog of Gauss's law can be used to find 

the total mass inside a sphere containing a black hole, the ADM mass, far away from the black 

hole. By using frame dragging of the gravitomagnetic field the angular momentum can be 

measured from a faraway distance from a black hole. This makes no observable difference between 

the gravitational field of such a black hole and that of any other spherical object of the same mass. 

The “sucking in everything” notion is applicable only inside the Black Hole’s horizon and not 

outside. 

 

Figure 1 Structure of Black Hole. 
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1.4 Event Horizon 

 

 

Figure 3 Closer to the black hole space time starts to deform. There are more paths towards black hole then paths moving away. 

 

 

Figure 4 Inside of the event horizon, all paths bring the particle closer to the center of the black hole. It is no longer possible for 

the particle to escape. 

There are 3 parts of a simple Black Hole:  

Event Horizon – Also called the Schwarzschild radius and is the part that we see all. It would 

appear that a dark, circular surface with a sharp edge in space. 

Figure 2 Far away from the black hole, a particle can move in any direction, as illustrated by the set of arrows. It is only 

restricted by the speed of light. 
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Interior Space – This is a muddled space where space and time can get horrendously damaged, 

packed, extended, and generally an awful place to movement through. 

Singularity - That's the place that matter goes when it falls through the event horizon. It's located 

at the center of the black hole, and it has an enormous density.  

When they reach the singularity, they are crushed to infinite density and their mass is added to the 

total of the black hole. Before that happens, they will have been torn apart by the growing tidal 

forces in a process sometimes referred to as spaghettification or the "noodle effect". 

1.5 Observational Evidence 

By their exceptionally nature, black holes don't specifically transmit any electromagnetic radiation 

other than the theoretical Hawking radiation, so astrophysicists scanning for black holes should 

for the most part depend on aberrant perceptions.  

 

1.5.1 Detection of gravitational waves from merging black holes 

On 14 September 2015, the LIGO gravitational wave observatory mentioned the first ever effective 

objective fact of gravitational waves. The signal was steady with hypothetical expectations for the 

gravitational waves created by the merging of two black holes: one with around 36 sun based 

masses, and the other around 29 sun oriented masses. 

 

1.5.2 Proper motions of stars orbiting Sagittarius A* 

The correct movements of stars close to the focal point of our own Milky Way give observational 

proof that these stars are circling a supermassive Black Hole. Since 1995, cosmologists have 

followed the movements of 90 stars circling an imperceptible object correspondent with the radio 

source Sagittarius A*. By fitting their movements to Keplerian circles, the cosmologists could 

surmise, in 1998, that a 2.6 million M☉ object must be contained in a volume with a range of 0.02 

light-years to cause the movements of those stars. 
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Figure 5 Keplerian Circles 

1.5.3 X-Ray Binaries 

 

X-beam pairs are twofold star frameworks that emanate a dominant part of their radiation in the 

X-beam to some portion of the range. These X-beam discharges are for the most part thought to 

come about when one of the stars (conservative question) accumulates matter from another 

(standard) star. The nearness of a conventional star in such a framework gives an extraordinary 

chance to concentrate the focal protest and to decide whether it may be a black hole.  

𝑅3

𝑇2 = 𝑀  (1.3) 
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Chapter 2: Literature Review 

2.1 Previously Published Black Holes Simulations 

2.1.1 The Black Hole Clustering Algorithm: A MATLAB Simulation 

 

This source code was written for the first time in order to simulate the Meta-heuristic Black Hole 

Clustering Method. First idea of this simulation proposed by A.Hatamlou in 2013. It was analyzed 

that this simulated black hole clustering method is similar to the PSO clustering method. At the 

other hand, the Black Hole Optimization is in fact a simplified version of Particle Swarm 

Optimization with inertia weight. So, this Data Clustering version of the Black Hole Algorithm 

can be used by researchers to solve some complex problems. Its efficiency be able to reach to PSO 

and even more than it in some problems.  

2.2 Black Hole Phenomenon 

In the eighteens-century John Michell and Pierre Laplace were the pioneers to identify the concept 

of black holes. Integrating Newton’s law they formulated the theory of a star becoming invisible 

to the eye, however, during that period it was not known as a black hole and it was only in 1967 

that John Wheeler the American physicist first named the phenomenon of mass collapsing as a 

black hole. A black hole in space is what forms when a star of massive size collapses. The 

gravitational power of the black hole is too high that even the light cannot escape from it. The 

gravity is so strong because matter has been squeezed into a tiny space. Anything that crosses the 

boundary of the black hole will be swallowed by it and vanish and nothing can get away from its 

enormous power. The sphere-shaped boundary of a black hole in space is known as the event 

horizon. The radius of the event horizon is termed as the Schwarzschild radius. At this radius, the 

escape speed is equal to the speed of light, and once light passes through, even it cannot escape. 

Nothing can escape from within the event horizon because nothing can go faster than light. The 

Schwarzschild radius is calculated by the following equation: 

 

𝑅 =  
2 𝐺 𝑀

𝑐2   (2.1) 
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where G is the gravitational constant, M is the mass of the black hole, and c is the speed of light. 

If anything moves close to the event horizon or crosses the Schwarzschild radius it will be absorbed 

into the black hole and permanently disappear. The existence of black holes can be discerned by 

its effect over the objects surrounding it. 

2.3 Creation of Black Holes. 

Only stars with very large masses can become black holes. Our Sun, for example, is not massive 

enough to become a black hole. Four billion years from now when the Sun runs out of the available 

nuclear fuel in its core, our Sun will die a quiet death. Stars of this type end their history as white 

dwarf stars. More massive stars, such as those with masses of over 20 times our Sun’s mass, may 

explode as supernovae and eventually create a black hole. 

A common type of black hole is produced by certain dying stars. A star with a mass greater than 

about 20 times the mass of our Sun may produce a black hole at the end of its life. The more 

massive the core of the star, the greater the force of gravity that compresses the material, collapsing 

it under its own weight. 

2.4 Types of Black Holes 

According to theory, there might be three types of black holes: stellar, supermassive, and miniature 

black holes – depending on their mass. These black holes would have formed in different ways. 

Stellar black holes form when a massive star collapses. Supermassive black holes, which can have 

a mass equivalent to billions of suns, likely exist in the centers of most galaxies, including our own 

galaxy, the Milky Way. We don't know exactly how 

supermassive black holes form, but it's likely that 

they're a byproduct of galaxy formation. Because of 

their location in the centers of galaxies, close to 

many tightly packed stars and gas clouds, 

supermassive black holes continue to grow on a 

steady diet of matter.  

No one has ever discovered a miniature black hole, 

which would have a mass much smaller than that of 

our Sun. But it's possible that 
Figure 6 Black Holes 

Figure 6 Black Holes 
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miniature black holes could have formed shortly after the "Big Bang," which is thought to have 

started the universe 13.7 billion years ago. Very early in the life of the universe the rapid expansion 

of some matter might have compressed slower-moving matter enough to contract into black holes. 

Based on the particles contained inside the black holes, there are four types of Black Holes;  

Table 1 Quadrant for types of Black hole 

 Non Rotating (J = 0) Rotating (J ≠ 0) 

Uncharged (Q = 0) Schwarzschild Kerr 

Charged (Q ≠ 0) Reissner - Nordstorm Kerr - Newmann 

2.5 Black Hole near Galaxy Effects 

2.5.1 Time Dilation 

 

The modern theory of gravity, called the Theory of General Relativity, developed by Albert 

Einstein in 1915 leads to some very unusual predictions, which have all been verified by 

experiments. 

One of the strangest ones is that two people will experience the passage of time very differently if 

one is standing on the surface of a planet, and the other one is in space. This is because the rate of 

time passing depends on the strength of the gravitational field that the observer is in. 

𝑇 = 𝑡√1 − 2𝐺𝑀/𝑅𝑐2  (2.2) 

2.5.2 Tidal Forces due to Black Hole 

 

A tidal force is a difference in the strength of gravity between two points. The gravitational field 

of the Moon produces a tidal force across the diameter of Earth, which causes Earth to deform. It 

also raises tides of several meters in the solid Earth, and larger tides in the liquid oceans. If the 

tidal force is stronger than a body's cohesiveness, the body will be disrupted. The minimum 

distance that a satellite comes to a planet before it is shattered this way is called its Roche Distance. 

𝑎 = 2𝐺𝑀𝑑/𝑅3  (2.3) 
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2.5.3 Temperature near Black Hole 

 

When gas flows into a black hole, it gets very hot and emits light. The gas is heated because the 

atoms collide with each other as they fall into the black hole. Far away from the black hole, the 

atoms do not travel very fast so the gas is cool. But close to the black hole, the atoms can be moving 

at millions of kilometers/hour and the gas can be thousands of degrees hot! 

𝑇 = 3500 ÷ (𝑅3/4) (2.4) 

2.5.4 Brightness near the Black Hole 

 

When from a distance, not only does the passage of time slow 

down for someone falling into a black hole, but the image 

fades to black! This happens because, during the time that the 

object reaches the event horizon and passes beyond, a finite 

number of light particles (photons) will be emitted. Once 

these have been detected to make an image, there are no more 

left because the object is on the other side of the event horizon 

and the photons cannot escape. A star, collapsing to a black 

hole, will be going very fast as it collapses, then appear to 

slow down as time dilates. 

𝐿 = 𝐿0𝑒
−

2𝑇

(3√3(2𝑀)) (2.5) 

  

Figure 7 Object falling in the black hole Figure 7 Object falling in Black Hole 
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Chapter 3: Methodology 

3.1 Solar System Simulation in MATLAB 

 

The model treats the sun and planets as perfect spheres each with three translational degrees of 

freedom. Planet spin is ignored. Gravitational fields generate the forces that keep the planets in 

orbit.  

3.1.1 Model Overview 

 

Solid blocks represent the solar system bodies and provide their geometries, inertias, and colors. 

 

Cartesian Joint blocks define the bodies’ degrees of freedom relative to the world 

frame, located at the solar system barycenter. 

 

Gravitational Field blocks add the long-range forces responsible for bending the initial planet 

trajectories into closed elliptical orbits. 

 

3.1.2 Initiation of Model A 

 

Step 1 At the MATLAB command prompt, we enter smnew. A MATLAB opens a model 

template with commonly used blocks and suitable solver settings for Simscape 

Multibody models. 

Step 2  We cut all but the Mechanism Configuration, Solver Configuration, and World 

Frame blocks. These three blocks provide the model with gravity settings, solver 

settings, and a global inertia reference frame. 

Step 3  In the Mechanism Configuration block dialog box, we set the Uniform Gravity to 

NONE. This setting enables you to model gravity as an inverse-square law force 

using Gravitational Field blocks instead. 

Figure 8 Solid Block 

Figure 10 Inserting 
Gravity 

Figure 9 Cartesian 
Joint Block flow 



12 
 

3.1.3 Addition of the Solar System Bodies 

 

Step 1 In the Solid block dialog boxes, we set the Geometry > Shape parameter to Sphere 

and the Inertia > Based on parameter to Mass. 

Step 2 We specify the following Solid block parameters in terms of MATLAB data 

structure fields. Enter the field names in the format Structure.Field, where Structure 

is the title-case name of the solar system body and Field is the string shown in the 

table—e.g., Sun.R or Earth.RGB 

Step 3 In the Simulink® menu bar, we select Tools > Model Explorer > Model Workspace 

>  Data  

 

Figure 11Solar System Bodies 

3.1.4 Addition of Degrees of Freedom 

 

Step 1  We add to the model nine Cartesian Joint blocks from the Joints library. 

Step 2  We connect and name the blocks as shown in the figure. 
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Figure 12 Adding Degree of Freedom 

3.1.5 Addition of the Initial State Targets 

 

Step 1  In the Cartesian Joint block dialog boxes, we check the State Targets > Specify 

Position Target and State Targets > Specify Velocity Target checkboxes for the X, 

Y, and Z prismatic joint primitives.      

Step 2  We specify the Cartesian Joint state target values for the X, Y, and Z prismatic joint 

primitives in terms of MATLAB structure fields. Also, the field names will be in 

the format Structure.Field, where Structure is the title-case name of the solar 

system body and Field is the string shown in the table—e.g., Sun.Px or Earth.Vz. 

Step 3 Addition of the State Target Initialization Code. We add the State Target 

Initialization Code  >  Model Workspace  > Data Source to MATLAB Code.  

3.1.6 Addition of the Gravitational Fields 

 

Step 1 In each Solid block dialog box, we expand the Frames area and click the Create 

button. 

Step 2 We set the Frame Name parameter to R2 and click the Save button.   

Step 3 We Set the Frame Name parameter to R2 and click the Save button. 
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Step 4 In the Gravitational Field blocks, we specify the Mass parameter as MATLAB 

structure field names. The field names will be in the format Structure. Field, where 

Structure is the title-case name of the solar system body and Field is the string M—

e.g., Sun.M or Earth.M. These fields have been previously defined in the model 

workspace. 

 

Figure 13 Adding Gravitational Fields 

3.1.7 Configuration and Initiation of the Simulator 

 

We configure the Simulink solver settings to capture ten earth revolutions in a single simulation. 

Then, simulate the model and shows the resulting solar system animation. We configure the 

animation settings to play the ten-year animation in the period of a few seconds. 

Step 1  In the Simulink menu bar, we select Simulation > Model Configuration Parameters. 

Step 2 We set the Stop time parameter to 10*365*24*60*60. This number, equal to ten 

years in seconds, allows us to simulate a full ten earth revolutions from Nov 1st , 

2017 through Nov 1st, 2027. 

Step 3 We set the Max step size parameter to 24*60*60. This number, equal to one day in 

seconds, is small enough to provide smooth animation results.  

Step 4 We update the block diagram, for example, by selecting Simulation > Update 

Diagram. 
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Step 5   We run the simulation, for example, by selecting Simulation > Run. 

Step 6   In Mechanics Explorer, select Tools > Animation Settings. 

Step 7  In Base (1X) Playback Speed, we enter 3153600. This speed corresponds to one 

earth revolution every ten seconds. 

Step 8  We can Pause and play the animation to apply the new base playback speed. The 

figure shows the animation results at the new speed. 

3.2 Ephemeris Database for a particular time zone simulation 

 

Ephemeris database provides the initial states—positions and velocities—of the sun and planets 

relative to the world frame. The initial states correspond to the solar system configuration on Nov 

1st, 2017. These databases are the NASA Jet Propulsion Laboratory (JPL) databases for several 

planets in the solar system and other celestial-related data. 

We obtained the ephemeris data using the MATLAB ‘planetEphemeris’ function after installing 

the Aerospace Ephemeris Data support package.  

Using the ‘aeroDataPackage’ function we can add extra packages and data in the Aerospace 

toolbox. 

//syntax: 

position= planetEphemeris(‘ephemerisTime’,’center’,’target’,’ephemerisModel’,’units’,’action’) 

position= planetEphemeris(ephemerisTime,center,target) implements the position of the target 

object relative to the specified center object for a given Julian date ephemerisTime. By default, the 

function implements the position based on the DE405 ephemerides in units of km. 

[position,velocity] = planetEphemeris(___) implements the position and velocity of a the target 

object relative to the specified centre for a given Julian date ephemerisTime using any of the input 

arguments in the previous syntaxes. 
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3.3 Spiral Galaxy Formation Simulation Using MATLAB Function Blocks[29] 

 

This model was inspired by the classic paper "Galactic Bridges and Tails". The original paper 

explained how disc shaped galaxies could develop spiral arms. Two-disc shape galaxies originally 

are far apart. They then fly by each other and almost collide. Once the galaxies are close enough, 

mutual gravitational forces cause spiral arms to form. 

 

Figure 14 Matlab Simulation of 2 Spiral Galaxies 

3.3.1 Initial Conditions 

The initial conditions are: galaxy radius in parsecs (rp), galaxy mass in solar mass units (cm), 

galaxy position in parsecs (pos), and galaxy velocity in m/s (vel).In the model, constant blocks 

specify the initial conditions. The initial conditions have been chosen such that the galaxies will 

nearly collide at some point in time.  

3.3.2 Construct of Galaxy Blocks 

The initial conditions are passed to the MATLAB function blocks Construct Galaxy 1 and 

Construct Galaxy 2. These MATLAB function blocks contain MATLAB code that builds the 

galaxy models. 

In a typical galaxy, most of the mass is concentrated in its center as a super-massive black hole 

and/or star agglomeration. We model the galaxy as a disc with radius r with most of its mass 
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concentrated in the inner circle of radius(r 3)⁄ . In addition to this super-massive nucleus, the 

"ConstructGalaxy" MATLAB function block creates 349 random stars with masses ranging from 

4 to 24 solar masses. These stars are randomly positioned within distance r/3 and r from the center 

of the galaxy. The stars initially move in circular orbits around the galaxy core. Every object (star 

or galaxy core) has mass, position (x, y, z), and velocity (Vx, Vy, Vz). 

 

3.3.3 "Matrix Concatenation" Block. 

This block joins information about both galaxies. At this point the model has 700 objects: 1 core 

for each galaxy and 349 stars around each core. These 700 objects interact according to Newtonian 

mechanics. 

 

3.3.4 "Partition" Block. 

This MATLAB function block separates all 700 objects into two groups: heavy bodies and light 

bodies. The heavy bodies are the galaxy cores. The light bodies are the stars. Because the galaxy 

cores are much heavier than individual stars, the model will consider only the heavy-heavy and 

heavy-light interactions. We can ignore the light-light body interactions. This will save a lot of 

time since 698 out of 700 bodies in the model are light. 

 

3.3.5 "ApplyGravity" Block 

This MATLAB function block uses Newtonian mechanics to compute the velocities and positions 

of the bodies at each step. The "combine" block is also a MATLAB function block. It merges the 

data about heavy and light objects together. 

 

3.3.6 "PlotAll" Block 

This MATLAB function block plots the bodies in a figure and updates the position of each star at 

every step in the simulation. 

   

 Figure 15 Final Model Obtained 
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3.4 Two Body Simulations having different mass 

For studying the Black Hole and their Host Galaxies, We need to understand the behaviour of the 

masses in their gravitational field. We took different cases to observe the two bodies’ behavior in 

only their gravitational field. 

3.4.1 Simulation Configuration 1 – Bodies at Rest 

This Simulation is when the two bodies are in rest of equal masses with decent of time, in the 

gravitational pull, the approach themselves in a straight line. After the approach they collide and 

stay as a one mass. 

This demonstrate the effect to equal mass still bodies’ gravitational field in a period of time.  

 

Figure 16 Two Body simulation of still masses 

3.4.2 Simulation Configuration 2 – Bodies at rest – Mass varying 

This simulation is for the two different masses with M2 be a higher mass this shows that the M1 

has travelled more than the M2 due to net acceleration on M1 is more due to the factor of M2 

which is very massive comparatively to the M1. Which give the accretion of M1 higher which 

makes the velocity of M1 higher hence M1 travels more. 
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Figure 17 Two Body Simulation with M1 greater than M2 

 

3.4.3 Simulation Configuration 3 – Body 1 having velocity in x,y,z axis 

 

The study of two masses when one is at rest and other is having some velocity and also they are 

only in the effect of their gravitational field. 

The simulation result suggest that the both 

body come closer in the curved path due to 

velocity of particle in different direction as 

that of the gravitational force. This 

accelerates the bodies in different direction 

they trace the path that is curve and non-

coplanar. Which also help us to understand 

why the bodies don’t submerge in black 

hole still it have height mass ratio. 

Figure 18 Two Body Simulation with M1 having velocity and M2 is Still 
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3.4.4 Simulation Configuration 4 – Body 1 having velocity and mass varying 

This simulation tells about the motion of the object when both bodies have velocity but the ratio 

of the masses are very high. It implies that the higher mass body will revolve but with lower speed 

comparative to light mass the distance travelled by the light mass would be large comparative to 

lighter mass but it also tell due to presence of the velocity the masses will not travel in the direction 

of the each other but they would  be forming curve. Due to acceleration due to gravitational pull. 

 

 

Figure 20 Two Body simulation with mass varying with M1 having constant velocity 

Figure 19 M1 being very heavy than M2 
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3.5 Galactic Black Hole without charge – Kerr Black Hole 

As per the theory the Galaxy address Centre contain a massive black hole which binds the billions 

of star system in a Galaxy like sun in solar system. The effect of the black hole on the particle 

around a simulated and the following parameters are in consideration. 

1. Radius of the orbit of celestial body 

2. Spin rate of the black hole  

3. Polar angle of celestial body  

4. Polar angular momentum of body  

5. Angular momentum of the celestial body  

The types of Orbital simulated using mathematical 11.0.1 trial version they are as follows: 

A. Close Orbit  

B. Constant radius Orbit  

C. Spiral capture Orbit  

D. Unstable circular orbit capture  

E. Unstable circular orbit escape  

F. Orbit reverse and capture  

G. Whirl Orbit 

These are the possible orbits in which celestial bodies in the Galaxy can be found around black 

hole still with many assumptions when various radius from 2.1 to 38 AU. This defines the path of 

various solar system in the orbit around black hole and its effects on the trajectories. As well as 

the variation of angular momentum and the spin rate also define the path and ergo-sphere comes 

in the effect. 

Ergo-sphere – The Region outside the rotating black hole’ outer event horizon. The region where the Black 

hole’s spin drags space in direction of the hole’s rotation so strongly that nothing can move counter 

clockwise to the spin of the black hole. 
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Table 2 Different types of obit with explanation for Galactic Kerr Black Hole 

Type of 

Orbit 

Angular 

Momentum 

Polar Angle 

of Celestial 

Body 

Polar 

Angular 

Momentum 

Spin Rate 
Radius 

of Orbit 
Remarks 

Constant 

Radius 

Orbit 

2 𝜋/3 0.76 0.99 4 AU 

In a Closed Orbit, the 

black hole forms and 

traces the curved 

cylinder with the time 

without colliding with 

the black hole. 

 

Figure 21 Constant Radius Orbit 

Closed 

Orbit 
2.148 1.037 0 0.99 4 AU 

This forms a closed 

loop ring 

 

Figure 22 Closed Orbit 
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Spiral 

Capture 

Black Hole 

3.45 𝜋/2 0 0 10 AU 

This forms a spiral 

capture orbit and gets 

inside the event 

horizon. This is the 

trajectory of the 

particles that are not 

binded in the black 

hole. 

 

Figure 23 Spiral Capture Black Hole 

Unstable 

Circular 

orbit 

capture  

3.999 𝜋/2 0 0 4 AU 

The body revolves in 

circle and degrade into 

circular orbit and lands 

on the black hole 

 

Figure 24 Unstable Circular Orbit Capture 



24 
 

Unstable 

Circular 

Orbit 

Escape 

4 𝜋/4 0 0 4 AU 

It is the simualation of 

the orbit of the escape 

and the particles which 

is escaped from galaxy. 

 

Figure 25 Unstable Circular Orbit Escape 

Orbit 

reverse and 

capture  

-4.5 𝜋/2 0 0.9 4 AU 

This is the orbit of the 

celestial body which 

passes through the 

ergosphere and get 

captured and the 

direction is reversed. 

 

Figure 26 Orbit Reverse and Capture 
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Whirl Orbit 1.0569 𝜋/2 2.89 0.99 10 AU 

This is the orbit of the 

particle that are in the 

random motion in the 

galaxy. It happens due 

to the spin rate of black 

hole and angular 

momentum of the 

particles. 

 

Figure 27 Whirl Orbit 

3.6 Galactic Black Hole in 2 –D. 

For getting and verifying the results we got from different simulation we did the 2d simulation of 

the body around the black hole. When we kept the body’s momentum constant and varied the mass 

of the black hole it demonstrated that the, orbit was capture orbit, i.e. degrading orbit around the 

black hole. But when we increased the momentum of the body the degrading orbit converted into 

circular stable orbit which proves the simulation we did before. 

Hence this cross verified the effect of the black hole on the host galaxy shape and orbits of the star 

systems.  
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Figure 28 Simulation of Galactic Black hole in 2D, simulating a point supposing a heavy star system or celestial body 

The 2D simulation is nearly same as the 3d- simulation projection. And for the capture orbit at 

certain mass of the black hole the degrading orbit becomes the capture orbit. But when the mass 

is kept constant and the momentum were varied in different directions it was observed that the 

degrading orbit is converting into closed or constant radius orbit. Depending on the momentum 

given. 

Which tell that the body with high angular momentum around black hole if the black hole is not 

massive enough would be revolving around the black hole unless the external parameters are 

changed. 

3.7 Schwarzschild Black Hole Simulation 

A black hole with zero charge Q = 0 and no angular momentum J = 0. The exterior solution for 

such a black hole is known as the Schwarzschild solution (or Schwarzschild metric), and is an 

exact unique solution to the Einstein field equations of general relativity for the general static 

isotropic metric (i.e., the most general metric tensor that can represent a static isotropic 

gravitational field), 

  (3.1) 

The external Schwarzschild solution in Isotropic Eddington-Finkelstein coordinates is given by 

  (3.2) 
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The Schwarzschild black hole metric then becomes 

  (3.3) 

For the time dilation we studied the orbit energy and applied the theory of relativity to the orbits 

of the Schwarzschild black hole. The obtained results at different values of the Angular momentum 

of the body and radius of the orbit, and the simulation calculation using -  

orbitEnergy = −
1

r0
+

𝐿2

2r02 −
𝐿2

r03  (3.4) 

And, 

𝑟''[𝜏] == −(𝐺𝑀/𝑟[𝜏]2) + (𝐿2/𝑟[𝜏]3) − (3𝐺𝑀 𝐿2 𝑟[𝜏]4⁄   (3.5) 

And, 

𝑡′[𝜏] == √((𝑟[𝜏]/(𝑟[𝜏] − 2𝐺𝑀)) + (𝑟′[𝜏]2 𝑟[𝜏]2 (𝑟[𝜏] − 2𝐺𝑀)2⁄ ) + (𝑟[𝜏]3𝜙′[𝜏]2/(𝑟[𝜏] − 2𝐺𝑀)

 (3.6) 

After computing the results suggest that the time dilation with increase in angular momentum 

increases and as well as with increase in radius it decreases. 

Hence we can conclude that the time dilation is proportional to the angular momentum and 

inversely proportional to the radius of the orbit. 

 

Figure 29 Time Dilation effect due to Schwarzschild Black Hole  
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Chapter 4: Result  

Simulation 1 – Two bodies at rest with respect to each other. 

The Body follows straight line when placed in respective gravitational field. It implies that the 

attractive force is planar between two bodies. 

Simulation 2 – Two bodies with dissimilar masses at rest with respect to each 

other. 

It implies the acceleration of the body is inversely proportional to their inertial mass. Higher the 

mass less acceleration due to gravity. 

Simulation 3 – Equal mass bodies moving relative to each other. 

Equal Masses when placed, one at rest and other at motion. Due to gravitational attraction, planner 

force and the velocity makes the path curved. 

Simulation 4 – Dissimilar massive bodies with one body moving with respect to 

the other. 

Varying mass and one body with velocity, make the curve elongated as per the higher mass which 

tells the different orbits of the body around black hole. 

Simulation 5 – Dissimilar massive bodies moving opposite to each other. 

With constant masses and both body at motion tells the path traced by the star system around black 

hole and its influence in the period of revolution. 

Simulation 6 – Constant radius of a body in vicinity of a 3-D Kerr Black Hole. 

It tell when the body is in constant radius orbit with polar angular velocity at some polar angle the 

path around is forming bulged cylinder. Due to spin rate of the Black hole. 

Simulation 7 – Closed orbit of a body in vicinity of a 3-D Kerr Black Hole. 

In a closed orbit the path traced with zero polar angular moment but due to the spin rate of the 

black hole the path becomes cylinder. 
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Simulation 8 – Spiral capture orbit around a Kerr Black Hole. 

When spin rate and polar angular momentum both are zero it becomes the spiral capture orbit, 

planar. But at large distance 

Simulation 9 – Unstable circular capture orbit around a Kerr Black Hole. 

When body comes loser after 4.4 Au it becomes the Circular capture orbit. 

Simulation 10 – Escape orbit around a Kerr Black Hole. 

When Black hole has spin rate and bodies’ angular momentum is negative the path becomes 

circular escape orbit. 

Simulation 11 – Reverse and capture orbit around a Kerr Black Hole. 

When the black hole is spinning and the body has negative angular momentum but when it comes 

in egrosphere it lands on black hole. Due to reversal of the orbits. 

Simulation 12 – Whirl orbit around a Kerr Black Hole. 

When body has positive angular momentum with positive polar angular momentum and spin rate 

of the black hole is also positive, the body whirl around black hole. 

Simulation 13 - Time Dilation 

We simulated Schwarzschild black hole to demonstrate time dilation which suggest that the time 

dilation is proportional to angular momentum of the body and inversely proportional to the radius 

of orbit. So nearer the body more would be time dilation. 
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Chapter 5: Conclusion 

 Solar System simulation in MATLAB Simulink have shown positive results and the planets 

follow the numerically accepted Kepler’s Orbit.  

 Galaxy Simulation, consisting of a total of 700 bodies too have shown to follow the 

numerically accepted Kepler’s Orbit. 

 Mathematica Simulations conducted on two body under the influence of each other’s 

gravity and also for 2D and 3D Kerr Black Hole with different celestial orbits. 

 All simulations performed and done tells different relation of the blackhole on the galaxy. 

Which includes the different trajectories of the star systems and also the time dilation of 

the different orbit. 

 It also tells that the spin rate of an black hole is an crucial thing to decide the shpe of the 

galaxy, with higher spin rate the galaxy would be hairly and so on. 

 The body which is at less than 4.4 AU will lead to the capture orbit. 

 The egrosphsere is one of the cruicial thing which decides the spin of the nesr galactic 

center bodies. 

 Time Dilation is found to be for higher angular momentum of the body then that of the 

lower angular momentum body at the same orbit radius. 
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Appendix 

Appendix A – Solar System 

MATLAB CODE FOR CELESTIAL BODY PROPERTIES 

% All values are in SI units. 

% RGB color vectors are on a normalized 0-1 scale. 

% Body dimensions are scaled for visualization purposes.  

% Scaling has no impact on model dynamics. 

 

% Scaling 

SunScaling = 0.5e2; 

TerrestrialPlanetScaling = 1.2e3; 

GasGiantScaling = 2.5e2; 

 

% Sun 

Sun.M = 1.99e30; 

Sun.R = 6.96e8*SunScaling; 

Sun.RGB = [1 0.5 0]; 

 

% Mercury 

Mercury.M =3.30e23; 

Mercury.R = 2.44e6*TerrestrialPlanetScaling; 

Mercury.RGB = [0.5 0.5 0.5]; 

 

% Venus 

Venus.M = 4.87e24; 

Venus.R = 6.05e6*TerrestrialPlanetScaling; 

Venus.RGB = [1 0.9 0]; 

 

% Earth 

Earth.M = 5.97e24; 

Earth.R = 6.05e6*TerrestrialPlanetScaling; 

Earth.RGB = [0.3 0.6 0.8]; 

% Mars 

Mars.M = 6.42e23; 

Mars.R = 3.39e6*TerrestrialPlanetScaling; 



II 
 

Mars.RGB = [0.6 0.2 0.4]; 

 

% Jupiter 

Jupiter.M = 1.90e27; 

Jupiter.R = 6.99e7*GasGiantScaling; 

Jupiter.RGB = [0.6 0 0.3]; 

 

% Saturn 

Saturn.M = 5.68e26; 

Saturn.R = 5.82e7*GasGiantScaling; 

Saturn.RGB = [1 1 0]; 

 

% Uranus 

Uranus.M = 8.68e25; 

Uranus.R = 2.54e7*GasGiantScaling; 

Uranus.RGB = [0.3 0.8 0.8]; 

 

% Neptune 

Neptune.M = 1.02e26; 

Neptune.R = 2.46e7*GasGiantScaling; 

Neptune.RGB = [0.1 0.7 0.8]; 

MATLAB CODE TO INSERT INITIAL STATE TARGETS 

 

SunScaling = 0.5e2; 

TerrestrialPlanetScaling = 1.2e3; 

GasGiantScaling = 2.5e2; 

% Sun 

Sun.M = 1.99e30; 

Sun.R = 6.96e8*SunScaling; 

Sun.RGB = [1 0.5 0]; 

Sun.Px = 5.5850e+08;  

Sun.Py = 5.5850e+08; 

Sun.Pz = 5.5850e+08; 

Sun.Vx = -1.4663; 

Sun.Vy = 11.1238; 

Sun.Vz = 4.8370; 

% Mercury 

Mercury.M =3.30e23; 
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Mercury.R = 2.44e6*TerrestrialPlanetScaling; 

Mercury.RGB = [0.5 0.5 0.5]; 

Mercury.Px = 5.1979e+10;  

Mercury.Py = 7.6928e+09; 

Mercury.Pz = -1.2845e+09; 

Mercury.Vx = -1.5205e+04; 

Mercury.Vy = 4.4189e+04; 

Mercury.Vz = 2.5180e+04; 

 

% Venus 

Venus.M = 4.87e24; 

Venus.R = 6.05e6*TerrestrialPlanetScaling; 

Venus.RGB = [1 0.9 0]; 

Venus.Px = -1.5041e+10;  

Venus.Py = 9.7080e+10; 

Venus.Pz = 4.4635e+10; 

Venus.Vx = -3.4770e+04; 

Venus.Vy = -5.5933e+03; 

Venus.Vz = -316.8994; 

% Earth 

Earth.M = 5.97e24; 

Earth.R = 6.05e6*TerrestrialPlanetScaling; 

Earth.RGB = [0.3 0.6 0.8]; 

Earth.Px = -1.1506e+09;  

Earth.Py = -1.3910e+11; 

Earth.Pz = -6.0330e+10; 

Earth.Vx = 2.9288e+04; 

Earth.Vy = -398.5759; 

Earth.Vz = -172.5873; 

 

% Mars 

Mars.M = 6.42e23; 

Mars.R = 3.39e6*TerrestrialPlanetScaling; 

Mars.RGB = [0.6 0.2 0.4]; 

Mars.Px = -4.8883e+10;  

Mars.Py = -1.9686e+11; 

Mars.Pz = -8.8994e+10; 

Mars.Vx = 2.4533e+04; 

Mars.Vy = -2.7622e+03; 
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Mars.Vz = -1.9295e+03; 

 

% Jupiter 

Jupiter.M = 1.90e27; 

Jupiter.R = 6.99e7*GasGiantScaling; 

Jupiter.RGB = [0.6 0 0.3]; 

Jupiter.Px = -8.1142e+11;  

Jupiter.Py = 4.5462e+10; 

Jupiter.Pz = 3.9229e+10; 

Jupiter.Vx = -1.0724e+03; 

Jupiter.Vy = -1.1422e+04; 

Jupiter.Vz = -4.8696e+03; 

 

% Saturn 

Saturn.M = 5.68e26; 

Saturn.R = 5.82e7*GasGiantScaling; 

Saturn.RGB = [1 1 0]; 

Saturn.Px = -4.2780e+11;  

Saturn.Py = -1.3353e+12; 

Saturn.Pz = -5.3311e+11; 

Saturn.Vx = 8.7288e+03; 

Saturn.Vy = -2.4369e+03; 

Saturn.Vz = -1.3824e+03; 

 

% Uranus 

Uranus.M = 8.68e25; 

Uranus.R = 2.54e7*GasGiantScaling; 

Uranus.RGB = [0.3 0.8 0.8]; 

Uranus.Px = 2.7878e+12;  

Uranus.Py = 9.9509e+11; 

Uranus.Pz = 3.9639e+08; 

Uranus.Vx = -2.4913e+03; 

Uranus.Vy = 5.5197e+03; 

Uranus.Vz = 2.4527e+03; 

 

% Neptune 

Neptune.M = 1.02e26; 

Neptune.R = 2.46e7*GasGiantScaling; 

Neptune.RGB = [0.1 0.7 0.8]; 
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Neptune.Px = 4.2097e+12;  

Neptune.Py = -1.3834e+12; 

Neptune.Pz = -6.7105e+11; 

Neptune.Vx = 1.8271e+03; 

Neptune.Vy = 4.7731e+03; 

Neptune.Vz = 1.9082e+03; 

 

MATLAB CODE TO SIMULATE REAL TIME DATA 

 

%Implement the position of the Earth with respect to the Barycentre of solar system for Nov 1st, 2017: 

position = planetEphemeris(juliandate(2017,11,1),'solarSystem','Earth') 

output:  

position = 

   1.0e+08 * 

    1.1650    0.8564    0.3710 

%position and velocity of earth with respect to barycentre of Solar System.  

[position,velocity]=planetEphemeris(juliandate(2017,11,1),'solarSystem','Earth') 

position = 

   1.0e+08 * 

    1.1650    0.8564    0.3710 

velocity = 

  -19.0436   21.2804    9.2264 
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Appendix B – Galaxy Simulation 

CODE FOR GALAXY 1 

 

function bodies = ConstructGalaxy(rp,cm,pos,vel) 

  

persistent bs; 

numberOfBodies = 350; 

  

if isempty(bs); 

    rng('default'); 

    bs = ConstructGalaxy0(rp,cm,pos,vel,numberOfBodies); 

end 

  

bodies = bs; 

  

function bodies = ConstructGalaxy0(rp,cm,pos,vel,n) 

  

SolarMass = 1.9891e+30; % In kg 

G = 6.672E-11; % Nm^2/kg^2 (Gravitational constant) 

SpeedOfLight = 299792458; % in m/s 

YearInSeconds = 365*24*60*60; 

LightYear = SpeedOfLight*YearInSeconds; 

Parsec = 3.26*LightYear; 

  

radiusOuter = rp*Parsec; 

radiusInner = (rp/3)*Parsec; 

  

% Each star has X,Y,Z,VX,VY,VZ 

% X,Y,Z position in cartesian coordinates 

% VX,VY,VZ velocity in cartesian coordinates 

cm = cm*SolarMass; 

  

bodies = zeros(n,8); 

bodies(1,1) = cm; 

bodies(1,2) = pos(1)*Parsec; 

bodies(1,3) = pos(2)*Parsec; 

bodies(1,4) = pos(3)*Parsec; 
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bodies(1,5) = vel(1); 

bodies(1,6) = vel(2); 

bodies(1,7) = vel(3); 

bodies(1,8) = 'r'; 

  

if n > 1 

    for i = 2:n, 

        m0 = rand*20+4; 

        m = m0*SolarMass; 

        r = rand*(radiusOuter - radiusInner) + radiusInner; 

        arg = rand*(2*pi); 

        x = r*cos(arg); 

        y = r*sin(arg); 

        z = 0; 

        dx = cos(arg+pi/2); 

        dy = sin(arg+pi/2); 

        dz = 0; 

        % Compute free fall velocity 

        v = sqrt(G*cm/r); 

        bodies(i,1) = m; 

        bodies(i,2) = x+pos(1)*Parsec; 

        bodies(i,3) = y+pos(2)*Parsec; 

        bodies(i,4) = z+pos(3)*Parsec; 

        bodies(i,5) = dx*v+vel(1); 

        bodies(i,6) = dy*v+vel(2); 

        bodies(i,7) = dz*v+vel(3); 

        bodies(i,8) = 'r'; 

    end 

end 

 

CODE FOR GALAXY 2 

 

function bodies = ConstructGalaxy(rp,cm,pos,vel) 

  

persistent bs; 

numberOfBodies = 350; 

  

if isempty(bs); 



VIII 
 

    rng('default'); 

    bs = ConstructGalaxy0(rp,cm,pos,vel,numberOfBodies); 

end 

  

bodies = bs; 

  

function bodies = ConstructGalaxy0(rp,cm,pos,vel,n) 

  

SolarMass = 1.9891e+30; % In kg 

G = 6.672E-11; % Nm^2/kg^2 (Gravitational constant) 

SpeedOfLight = 299792458; % in m/s 

YearInSeconds = 365*24*60*60; 

LightYear = SpeedOfLight*YearInSeconds; 

Parsec = 3.26*LightYear; 

  

radiusOuter = rp*Parsec; 

radiusInner = (rp/3)*Parsec; 

  

% Each star has X,Y,Z,VX,VY,VZ 

% X,Y,Z position in certesian coordinates 

% VX,VY,VZ velocity in certesian coordinates 

cm = cm*SolarMass; 

  

bodies = zeros(n,8); 

bodies(1,1) = cm; 

bodies(1,2) = pos(1)*Parsec; 

bodies(1,3) = pos(2)*Parsec; 

bodies(1,4) = pos(3)*Parsec; 

bodies(1,5) = vel(1); 

bodies(1,6) = vel(2); 

bodies(1,7) = vel(3); 

bodies(1,8) = 'y'; 

  

if n > 1 

    for i = 2:n, 

        m0 = rand*20+4; 

        m = m0*SolarMass; 

        r = rand*(radiusOuter - radiusInner) + radiusInner; 

        arg = rand*(2*pi); 
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        x = r*cos(arg); 

        y = r*sin(arg); 

        z = 0; 

        dx = cos(arg+pi/2); 

        dy = sin(arg+pi/2); 

        dz = 0; 

        % Compute free fall velocity 

        v = sqrt(G*cm/r); 

        bodies(i,1) = m; 

        bodies(i,2) = x+pos(1)*Parsec; 

        bodies(i,3) = y+pos(2)*Parsec; 

        bodies(i,4) = z+pos(3)*Parsec; 

        bodies(i,5) = dx*v+vel(1); 

        bodies(i,6) = dy*v+vel(2); 

        bodies(i,7) = dz*v+vel(3); 

        bodies(i,8) = 'y'; 

    end 

end 

 

Code for partition block: 

function [heavy,light] = Partition(bodies) 

  

SolarMass = 1.9891e+30; % kg 

Limit = 100*SolarMass; 

  

n = size(bodies,1); 

props = size(bodies,2); 

heavy = zeros(n,props); 

light = zeros(n,props); 

  

lightIndex = 1; 

heavyIndex = 1; 

  

for i = 1:n 

    m = bodies(i,1); 

    if m < Limit 

        light(lightIndex,:) = bodies(i,:); 

        lightIndex = lightIndex + 1; 

    else 
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        heavy(heavyIndex,:) = bodies(i,:); 

        heavyIndex = heavyIndex + 1; 

    end 

end 

 

Code for Gravity Block 

function [heavy1,light1] = ApplyGravity(light,heavy) 

  

G = 6.672E-11; % Nm^2/kg^2 (Gravitational constant) 

  

YearInSeconds = 365*24*60*60; 

timeStep = 2000000*YearInSeconds; 

  

n = size(heavy,1); 

  

heavy1 = heavy; 

light1 = light; 

  

for i = 1:n, 

    mi = heavy(i,1); 

    if mi == 0 

        break; 

    end 

    xi = heavy(i,2); 

    yi = heavy(i,3); 

    zi = heavy(i,4); 

    ar = [0 0 0]; 

    for j = 1:n, 

        if i ~= j, 

            mj = heavy(j,1); 

            if mj == 0 

                break; 

            end 

            xj = heavy(j,2); 

            yj = heavy(j,3); 

            zj = heavy(j,4); 

            d = [xj yj zj] - [xi yi zi]; 

            dr2 = d(1)*d(1)+d(2)*d(2)+d(3)*d(3); 

            ar = ar + (d/sqrt(dr2))*((G*mj)/dr2); 
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        end 

    end 

    for k = 1:3 

        heavy1(i,4+k) = heavy(i,4+k) + ar(k)*timeStep; 

    end 

end 

  

for i = 1:n, 

    mi = light(i,1); 

    if mi == 0 

        break; 

    end 

    xi = light(i,2); 

    yi = light(i,3); 

    zi = light(i,4); 

    ar = [0 0 0]; 

    for j = 1:n, 

        mj = heavy(j,1); 

        if mj == 0 

            break; 

        end 

        xj = heavy(j,2); 

        yj = heavy(j,3); 

        zj = heavy(j,4); 

        d = [xj yj zj] - [xi yi zi]; 

        dr2 = d(1)*d(1)+ d(2)*d(2) + d(3)*d(3); 

        ar = ar + (d/sqrt(dr2))*((G*mj)/dr2); 

    end 

    for k = 1:3 

        light1(i,4+k) = light(i,4+k) + ar(k)*timeStep; 

    end 

end 

  

for i = 1:n 

    for k = 1:3 

        heavy1(i,k+1) = heavy1(i,k+1) + timeStep*heavy1(i,k+4); 

    end 

    for k = 1:3 

        light1(i,k+1) = light1(i,k+1) + timeStep*light1(i,k+4); 
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    end 

end 

 

Code for Merge Block 

function M = combine(A,B) 

  

n = size(A,1); 

nProps = size(A,2); 

M = zeros(n,nProps); 

for i = 1:n 

    if A(i,1) == 0 

        break 

    end 

    M(i,:) = A(i,:); 

end 

n1 = n - i + 1; 

for j = 1:n1 

    M(j+i-1,:) = B(j,:); 

    if B(i,1) == 0 

        break 

    end 

end 

 

Code for Plot Block 

 

function PlotAll(bodies) 

  

persistent fig; 

persistent oldPlot; 

  

coder.extrinsic('findobj','get','set','figure','clf','hold','text','delete','plot3','drawnow'); 

  

n = size(bodies,1); 

  

SpeedOfLight = 299792458; % in m/s 

YearInSeconds = 365*24*60*60; 

LightYear = SpeedOfLight*YearInSeconds; 

Parsec = 3.26*LightYear; 

foundFig = findobj('Tag','galaxyScreen'); 
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if isempty(fig)||isempty(foundFig) 

    if isempty(foundFig) 

        fig = figure; 

    else 

        fig = figure(foundFig); 

    end; 

    clf(fig); 

    set(fig, 'Name', 'Galaxy'); 

    set(fig, 'Tag', 'galaxyScreen'); 

    set(fig, 'Renderer', 'painters'); 

    set(fig, 'Color', 'black'); 

    hold('on'); 

    fig_axes = get(fig, 'CurrentAxes'); 

    init_axes(fig_axes); 

    text(0,3.5*30000*Parsec,0,... 

        ['Spiral galaxy formation on close encounters', ... 

        char(10),'(based on Toomre & Toomre, 1972)'],... 

        'Color','green','FontSize',12, 'HorizontalAlignment','center'); 

end 

  

points_x = zeros(1,n); 

points_y = zeros(1,n); 

points_z = zeros(1,n); 

points_col = zeros(1,n); 

for i = 1:n, 

    points_x(i) = bodies(i,2); 

    points_y(i) = bodies(i,3); 

    points_z(i) = bodies(i,4); 

    points_col(i) = bodies(i,8); 

end 

  

% 

% Remove the old plot. 

% 

if isempty(oldPlot) 

    oldPlot = fig; 

elseif ~isempty(foundFig) 

    delete(oldPlot); 
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end 

  

oldPlot = plot3(points_x,points_y,points_z,'w.'); 

drawnow; 

  

function init_axes(a) 

  

coder.extrinsic('set'); 

  

SpeedOfLight = 299792458; % in m/s 

YearInSeconds = 365*24*60*60; 

LightYear = SpeedOfLight*YearInSeconds; 

Parsec = 3.26*LightYear; 

set(a, 'CameraTarget', [0,0,0] ); 

set(a, 'CameraPosition', [0,22000*Parsec*3,18000*Parsec*3]); 

set(a, 'CameraViewAngle', 80 ); 

set(a, 'CameraUpVector', [0,1,0]); 

set(a, 'Visible', 'off' ); 

set(a, 'XLim', [-25000*Parsec*8,30000*Parsec*8]); 

set(a, 'YLim', [-25000*Parsec*8,30000*Parsec*8]); 

set(a, 'ZLim', [-30000*Parsec*8,30000*Parsec*8]); 
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Appendix C – 2 Celestial Body Simulation 

G = 667384/10^16; (* Gravitational Constant *) 

Au = 149597870690; (* Astronomical Unit in m *) 

mSol = 1988*10^27; (* Sun Mass in kg *) 

(* Container *) 

Funktion[{{x1x_, y1y_, z1z_}, {x2x_, y2y_, z2z_}}, {{vx1x_, vy1y_,  

    vz1z_}, {vx2x_, vy2y_, vz2z_}}, {m1_, m2_}, T_,  

  plotType : ("x" | "v"), plotOptions___] :=  

 Module[{nds, Tmax, funcToPlot}, 

   (* Differential Equation *) 

   nds = NDSolve[{ 

      x1'[t] == vx1[t], y1'[t] == vy1[t], z1'[t] == vz1[t], 

      x2'[t] == vx2[t], y2'[t] == vy2[t], z2'[t] == vz2[t], 

       vx1'[t] == (G  m2 (x2[t] - x1[t]))/ 

       Sqrt[((x2[t] - x1[t])^2 + (y2[t] - y1[t])^2 + (z2[t] -  

           z1[t])^2)^3], 

             vy1'[t] == (G  m2 (y2[t] - y1[t]))/ 

       Sqrt[((x2[t] - x1[t])^2 + (y2[t] - y1[t])^2 + (z2[t] -  

           z1[t])^2)^3], 

             vz1'[t] == (G m2 (z2[t] - z1[t]))/ 

       Sqrt[((x2[t] - x1[t])^2 + (y2[t] - y1[t])^2 + (z2[t] -  

           z1[t])^2)^3], 

            vx2'[t] == (G m1  (x1[t] - x2[t]))/ 

       Sqrt[((x1[t] - x2[t])^2 + (y1[t] - y2[t])^2 + (z1[t] -  

           z2[t])^2)^3], 

       vy2'[t] == (G m1  (y1[t] - y2[t]))/ 
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       Sqrt[((x1[t] - x2[t])^2 + (y1[t] - y2[t])^2 + (z1[t] -  

           z2[t])^2)^3], 

         vz2'[t] == (G m1  (z1[t] - z2[t]))/ 

       Sqrt[((x2[t] - x1[t])^2 + (y2[t] - y1[t])^2 + (z2[t] -  

           z1[t])^2)^3], 

            x1[0] == x1x, y1[0] == y1y, z1[0] == z1z, 

      x2[0] == x2x, y2[0] == y2y, z2[0] == z2z, 

            vx1[0] == vx1x, vy1[0] == vy1y, vz1[0] == vz1z, 

      vx2[0] == vx2x, vy2[0] == vy2y, vz2[0] == vz2z}, 

          {x1, x2, y1, y2, z1, z2, 

      vx1, vx2, vy1, vy2, vz1, vz2}, 

     {t, 0, T}]; 

      If[Head[nds] =!= NDSolve, Tmax = nds[[1, 1, 2, 1, 1, 2]]; 

        funcToPlot =  

     If[plotType ===  

        "x", {{x1[t], y1[t], z1[t]}, {x2[t], y2[t], z2[t]}}, {{vx1[t], 

          vy1[t], vz1[t]}, {vx2[t], vy2[t], vz2[t]}}] /. nds[[1]]; 

        (* Plot Specifications *) 

        ParametricPlot3D[Evaluate[funcToPlot], {t, 0, Tmax},  

     PlotStyle -> {{Red, Thick}, {Blue, Thick}}, 

          (* Plot Range *) 

     PlotRange -> {{-2 Au, 2 Au}, {-2 Au, 2 Au}}, AspectRatio -> 1,  

     MaxRecursion -> ControlActive[3, 100], plotOptions],  

    Text["Yukterez Mod."]]] // Quiet 

Manipulate[Show[Funktion[ 

   (* Positions xyz *) {{P1x, P1y, P1z}, {P2x, P2y, P2z}}, 

   (* Velocities xyz *) {{v1x, v1y, v1z}, {v2x, v2y, v2z}}, 
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   (* Masses *) {M1, M2}, 

   (* Plot Variables  *) T, xv, 

   ImageSize -> {440, 440}], 

    (* Initial Positions *) 

  Graphics3D[{{Red, Point[{P1x, P1y, P1z}]}, {Blue,  

     Point[{P2x, P2y, P2z}]}}]], 

 {{xv, "x", "Position"}, 

  {"x" -> "Position"}}, 

  (* Starttime and Timeinterval *) 

 {{T, 3*^6, "Time"}, 10000, 2*10^7},  

 {{M1, mSol}, 1, 4 mSol}, {{M2, mSol}, 1, 2 mSol},  

 {{P1x, -Au}, -2 Au, 2 Au}, {{P1y, 0}, -2 Au,  

  2 Au}, {{P1z, -Au}, -2 Au, 2 Au},   

 {{P2x, Au}, -2 Au, 2 Au}, {{P2y, 0}, -2 Au, 2 Au}, {{P2z, Au}, -2 Au, 

   2 Au},  

 {{v1x, 0}, -100000, 100000}, {{v1y, 0}, -100000,  

  100000}, {{v1z, 0}, -100000, 100000},    

 {{v2x, 0}, -100000, 100000}, {{v2y, 0}, -100000,  

  100000}, {{v2z, 0}, -100000, 100000},   

  ControlPlacement -> {Right}] 

  



XVIII 
 

Appendix D – Galactic Black Hole in 3D (Kerr Black Hole) 

 

Manipulate[ 

 If[ 

  ! slidersEnabled, 

      {pT, aI, rI, iL, \[Theta]I, p\[Theta]I, frame, tailLength,  

    zoomManual} = presetValues; 

    slidersEnabled = True; 

     ]; 

 viewRadius = 10;    

  view\[Theta]       = 0.85  \[Pi]/2; 

 view\[Phi]       = 0.35   \[Pi]/2; 

 divergence = 0.05 \[Pi]/2; 

  rightViewPoint =  

    viewRadius { 

    Sin[view\[Theta]] Cos[view\[Phi]], 

    Sin[view\[Theta]] Sin[view\[Phi]], 

    Cos[view\[Theta]] 

              }; 

  leftViewPoint =  

    viewRadius { 

    Sin[view\[Theta]] Cos[view\[Phi] - divergence], 

    Sin[view\[Theta]] Sin[view\[Phi] - divergence], 

    Cos[view\[Theta]] 

              }; 

  Ee = 



XIX 
 

  \[ScriptCapitalE] /. 

   Solve[ 

             ( -aI^2 p\[Theta]I^2 + 2 iL^2 rI + 

        2 p\[Theta]I^2 rI - aI^2 rI^2 - 

        iL^2 rI^2 - p\[Theta]I^2 rI^2 + 

        2 rI^3 - rI^4 - 

        4 aI iL rI \[ScriptCapitalE] + 2 aI^2 rI \[ScriptCapitalE]^2 + 

        aI^2 rI^2 \[ScriptCapitalE]^2 + rI^4 \[ScriptCapitalE]^2 + 

        aI^2 (aI^2 + (-2 +  

              rI) rI) (-1 + \[ScriptCapitalE]^2) Cos[\[Theta]I]^2 - 

        iL^2 (aI^2 + (-2 + rI) rI) Cot[\[Theta]I]^2) == 0, 

           \[ScriptCapitalE] 

          ][[2]];  

 Ce = 

  p\[Theta]I^2 +  

   Cos[\[Theta]I]^2 (aI^2 (1 - Ee^2) + iL^2/Sin[\[Theta]I]^2); 

 dynamicEquations = 

  { 

   r'[\[Tau]]   ==  (pr[\[Tau]] (a^2 - 2 r[\[Tau]] + r[\[Tau]]^2))/( 

    a^2 Cos[\[Theta][\[Tau]]]^2 + r[\[Tau]]^2), 

          pr'[\[Tau]]  == (a^4 (-a Ee + L)^2 Cos[\[Theta][\[Tau]]]^2 +  

       a^4 (L^2 Cos[\[Theta][\[Tau]]]^2 Cot[\[Theta][\[Tau]]]^2 +  

          p\[Theta][\[Tau]]^2) r[\[Tau]] +  

       a^2 (-a^2 Ee^2 + 2 a Ee L - L^2 +  

          2 a Ee (a Ee + L) Cos[\[Theta][\[Tau]]]^2 -  

          4 L^2 Cot[\[Theta][\[Tau]]]^2 -  

          4 p\[Theta][\[Tau]]^2) r[\[Tau]]^2 + (4 a^2 Ee^2 -  
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          8 a Ee L + 4 L^2 - 4 a^2 Ee^2 Cos[\[Theta][\[Tau]]]^2 +  

          4 L^2 Cot[\[Theta][\[Tau]]]^2 +  

          2 a^2 L^2 Cot[\[Theta][\[Tau]]]^2 +  

          2 (2 + a^2) p\[Theta][\[Tau]]^2) r[\[Tau]]^3 + (-2 a^2 Ee^2 \ 

+ 6 a Ee L - 4 L^2 + a^2 Ee^2 Cos[\[Theta][\[Tau]]]^2 -  

          4 L^2 Cot[\[Theta][\[Tau]]]^2 -  

          4 p\[Theta][\[Tau]]^2) r[\[Tau]]^4 + (L^2 Csc[\[Theta][\ 

\[Tau]]]^2 + p\[Theta][\[Tau]]^2) r[\[Tau]]^5 - Ee^2 r[\[Tau]]^6 +  

       pr[\[Tau]]^2 (a^2 - 2 r[\[Tau]] +  

          r[\[Tau]]^2)^2 (a^2 Cos[\[Theta][\[Tau]]]^2 - r[\[Tau]]^2 +  

          a^2 r[\[Tau]] Sin[\[Theta][\[Tau]]]^2))/((a^2 Cos[\[Theta][\ 

\[Tau]]]^2 + r[\[Tau]]^2)^2 (a^2 - 2 r[\[Tau]] + r[\[Tau]]^2)^2), 

        \[Phi]'[\[Tau]]   ==  (a^2 L Cot[\[Theta][\[Tau]]]^2 +  

       2 (a Ee - L - L Cot[\[Theta][\[Tau]]]^2) r[\[Tau]] +  

       L Csc[\[Theta][\[Tau]]]^2 r[\[Tau]]^2)/((a^2 Cos[\[Theta][\ 

\[Tau]]]^2 + r[\[Tau]]^2) (a^2 - 2 r[\[Tau]] + r[\[Tau]]^2)), 

             \[Theta]'[\[Tau]]   ==  p\[Theta][\[Tau]]/( 

    a^2 Cos[\[Theta][\[Tau]]]^2 + r[\[Tau]]^2), 

           p\[Theta]'[\[Tau]]  == ((2 a^2 Cos[\[Theta][\[Tau]]] ((Ce +  

               a^2 (-1 + Ee^2) Cos[\[Theta][\[Tau]]]^2 -  

               L^2 Cot[\[Theta][\[Tau]]]^2) (a^2 - 2 r[\[Tau]] +  

               r[\[Tau]]^2) - (Ce + (-a Ee + L)^2 +  

               r[\[Tau]]^2) (a^2 - 2 r[\[Tau]] + r[\[Tau]]^2) + (a L - 

               Ee (a^2 +  

                 r[\[Tau]]^2))^2) Sin[\[Theta][\[Tau]]])/(a^2 -  

          2 r[\[Tau]] + r[\[Tau]]^2) -  

       a^2 p\[Theta][\[Tau]]^2 Sin[2 \[Theta][\[Tau]]] -  
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       a^2 pr[\[Tau]]^2 (a^2 - 2 r[\[Tau]] + r[\[Tau]]^2) Sin[ 

         2 \[Theta][\[Tau]]] + (a^2 Cos[\[Theta][\[Tau]]]^2 +  

          r[\[Tau]]^2) (2 L^2 Cot[\[Theta][\[Tau]]] +  

          2 L^2 Cot[\[Theta][\[Tau]]]^3 -  

          a^2 (-1 + Ee^2) Sin[ 

            2 \[Theta][\[Tau]]]))/(2 (a^2 Cos[\[Theta][\[Tau]]]^2 +  

         r[\[Tau]]^2)^2) 

   }; 

  initialConditions = 

  { 

   r[0]    ==  rI, 

       pr[0]   ==  0, 

      \[Theta][0]   ==  \[Theta]I, 

      p\[Theta][0]  ==  p\[Theta]I, 

      \[Phi][0]    == 0 

   }; 

Quiet[ 

  HamiltonianSolve = 

    NDSolve[ 

             { 

              dynamicEquations, 

              initialConditions 

               } /. {a -> aI, L -> iL}, 

             {r, \[Phi], \[Theta], pr, p\[Theta]}, 

             {\[Tau], 0, pT}, 

       Method -> {EventLocator,  

       "Event" -> (r[\[Tau]] - 1.02 holeSize )} 



XXII 
 

             ]; 

       ]; 

      domain      =    (r /. HamiltonianSolve[[1, 1]])["Domain"]; 

  {begin, end} =     domain[[1]]; 

  (**) 

 planetHasPlunged =  

    Abs[ 

    (r[end] /. HamiltonianSolve)[[1]] - holeSize 

     ] <= 0.05 holeSize; 

      

 startPlot = 

  If[ 

   (end - tailLength) <= 0 

   , 

   0 

   , 

   (end - tailLength) 

    ]; 

 If[ 

  zoomManual == False, 

    initialOuterRadius = ( r[end] /. HamiltonianSolve)[[1]]; 

    frameCantidate = 

      1.05 

        If[ 

     initialOuterRadius > rI, 

      initialOuterRadius 

       rI, 
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     ]; 

      frame = 

   If[ 

    frameCantidate > frame 

    , 

    frameCantidate 

    , 

    frame 

    ];, 

  {}]; 

  (* 

  the position of the planet  

 *) 

 planetPosition =       

                    { 

                     r[end] Sin[\[Theta][end]] Cos[\[Phi][end]], 

                     r[end] Sin[\[Theta][end]] Sin[\[Phi][end]], 

                     r[end] Cos[\[Theta][end]] 

                      } /. HamiltonianSolve; 

 orbitPlot = 

    ParametricPlot3D[ 

                   {  

                r[\[Tau]] Sin[\[Theta][\[Tau]]] Cos[\[Phi][\[Tau]]], 

                         r[\[Tau]] Sin[\[Theta][\[Tau]]] Sin[\[Phi][\[Tau]]], 

                      r[\[Tau]] Cos[\[Theta][\[Tau]]] 

                     } /. HamiltonianSolve, 

                    {\[Tau], startPlot, end}, 
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                     PlotRange -> 

                               { 

                                 {-frame, frame}, 

                                 {-frame, frame}, 

                                 {-frame, frame} 

                               }, 

                     PerformanceGoal -> "Speed", 

                     PlotPoints -> 200, 

                     MaxRecursion -> 8,(* 

                     ViewPoint\[Rule]rightViewPoint,*) 

                     SphericalRegion -> True, 

                 Mesh -> 4, 

                 Ticks -> Automatic 

                  ]; 

holeSize = 1 + Sqrt[ 1 - aI^2] ; 

   planetSize  = 0.02 frame; 

  If[ 

  planetHasPlunged, 

  adjustedPlanetSize  = 0;, 

  adjustedPlanetSize  = planetSize; 

      ]; 

  (**) 

 planetGraphic = 

    Graphics3D[{Green , Sphere[ planetPosition, adjustedPlanetSize]}]; 

  (* 

 inner boundary of the ergosphere: 

 *) 
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 noReturnHorizon = 

    Graphics3D[{Black   , Sphere[{0, 0, 0}        , holeSize  ]}]; 

  (* 

 outer ergosphere limit:  

 *) 

 outerErgosphereLimit =  

    Graphics3D[{ 

    Black, 

    Opacity[0.2], 

    Scale[ 

     Sphere[], 

     {2, 2, holeSize}, 

     {0, 0, 0} 

         ]} 

           ]; 

  (* 

  The orbit plot is combined with graphic elements for the hole 

 ergosphere and planet. 

 *) 

  rightImage = 

   Show[ 

          orbitPlot, 

   noReturnHorizon,  

   outerErgosphereLimit,   

   planetGraphic, 

      Graphics3D[ 

    Text[StringForm["energy = ``", Ee], {1.5 frame, 0, -1.1 frame}]], 
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      Graphics3D[ 

    Text[StringForm["Carter Q = ``", Chop[Ce]], {1.5 frame,  

      0, -1.3 frame}]], 

       ViewPoint -> rightViewPoint, 

   ImageSize -> {400, 400} 

   ]; 

  leftImage = 

   Show[ 

   orbitPlot, 

   noReturnHorizon,  

   outerErgosphereLimit,   

   planetGraphic, 

      Graphics3D[ 

    Text[StringForm["energy = ``", Ee], {1.5 frame, 0, -1.1 frame}]], 

    

   Graphics3D[ 

    Text[StringForm["Carter Q = ``", Chop[Ce]], {1.5 frame,  

      0, -1.3 frame}]], 

       ViewPoint -> leftViewPoint, 

   ImageSize -> {400, 400} 

   ], 

(* 

 time 

 *) 

 { 

     {pT, tailLength, "time"}, 150, 1200, 

     ImageSize -> Tiny, 
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  AnimationRate -> 3, 

     DisplayAllSteps -> False, 

  DefaultDuration -> 15, 

  ControlPlacement -> Left 

  }, (**) 

 Delimiter, (* 

 spin 

 *) 

 { 

  {aI, 0.99, "spin rate"}, 0, 0.99, .01, 

  Appearance -> "Labeled", 

  ImageSize -> Tiny, 

  ControlPlacement -> Left 

  }, (**) 

 Delimiter, 

  (**) 

 { 

  {rI, 4, "radius"}, 2.1, 30, .01, 

  Appearance -> "Labeled", 

  ImageSize -> Tiny, 

  ControlPlacement -> Left 

  }, (**) 

 { 

  {iL, 2, "L"}, -4.5, 4.5, .01, 

  Appearance -> "Labeled", 

  ImageSize -> Tiny, 

  ControlPlacement -> Left 
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  }, (**) 

 { 

  {\[Theta]I, \[Pi]/3, Subscript["\[Theta]", "I"]}, \[Pi]/7,  

  6 \[Pi]/7, \[Pi]/210, 

  Appearance -> "Labeled", 

  ImageSize -> Tiny, 

  ControlPlacement -> Left 

  }, 

{  {p\[Theta]I, 0.76, Subscript["p", Subscript["\[Theta]", "I"]]}, -3,  

  3, .01, 

  Appearance -> "Labeled", 

  ImageSize -> Tiny, 

  ControlPlacement -> Left 

  }, 

   (**) 

 Delimiter, 

   { 

  {tailLength, 1200, "tail"}, 150, 1500, 

  ControlPlacement -> Left, 

  ImageSize -> Tiny 

  }, 

 (**) 

 { 

  {frame, 4.5, "zoom"}, 2.5, 100, .01, 

  Appearance -> "Labeled", 

  ImageSize -> Tiny, 

  Enabled -> zoomManual, 
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  ControlPlacement -> Left 

  }, 

  (**) 

 { 

  {zoomManual, False, ""}, 

  {False -> "auto", True -> "manual"}, 

  ControlType -> RadioButton, 

  ControlPlacement -> Left 

  }, 

    (**) 

 Delimiter, 

{ 

  {slidersEnabled, True, ""}, 

  {False -> "orbit preset"}, 

  ControlType -> Setter, 

  ImageSize -> Tiny, 

  ControlPlacement -> Left 

  }, 

  {{presetValues, {1200,   0.99, 4, 2, \[Pi]/3, 0.767851, 4.5, 1200,  

    False}, ""}, 

  { 

   {300,   0.9, 4, 2.148, 1.037, 0, 4.2, 350, False} ->  

    Style["closed orbit                      ", 10] , 

   {1200,   0.99, 4, 2, \[Pi]/3, 0.767851, 4.5, 1200, False} ->  

    Style["constant radius orbit             ", 10] , 

   {150,   0.0, 10, 3.5, \[Pi]/2, 0, 4.5, 350, False} ->  

    Style["spiral capture orbit              ", 10] , 
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   {150,   0.0,   4,     3.99999, \[Pi]/2, 0, 4.5, 350, False} ->  

    Style["unstable circular orbit capture   ", 10] , 

   {100,   0.0,   4,     4.00001, \[Pi]/2, 0, 4.5, 350, False} ->  

    Style[ "unstable circular orbit escape   ", 10] , 

   {330, 0.99,  25, 2.427, \[Pi]/2, 0, 25, 330, False} ->  

    Style[ "equatorial (1,1,1) zoom and whirl orbit"] , 

   {150,  0.9,     4,      - 4.5, \[Pi]/2, 0, 4.2, 350, False} ->  

    Style["orbit reverse and capture        ", 10], 

   {150,  0.99,     10,   1.05769, \[Pi]/2, 2.89, 4, 150, True} ->  

    Style["3D zoom and whirl orbit         ", 10] 

   }, 

  ControlType -> PopupMenu, 

  ControlPlacement -> Left, 

  ImageSize -> Small 

  }, 

  (* 

  blank line 

  *) 

 Style[ 

  "", 

  Bold, Small 

      ], 

   (**) 

  SynchronousUpdating -> False, 

  SaveDefinitions -> True, 

  TrackedSymbols -> Manipulate, 

  AutorunSequencing -> {1, 2, 3, 4, 6, 7}] 
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Appendix E – 2D Black Hole 

point1[m1_] := Module[{a}, a = m1; a/100]; 

Manipulate[ 

 Module[{trajectoryplot, blackhole1}, 

  sol[m1_, pt1_] :=  

   Quiet[NDSolve[{x'[t] ==  

       ux[t]/(1 + m1/Sqrt[(x[t] - pt1[[1]])^2 + (y[t] - pt1[[2]])^2]), 

            y'[t] ==  

       uy[t]/(1 + m1/Sqrt[(x[t] - pt1[[1]])^2 + (y[t] - pt1[[2]])^2] ), 

            ux'[ 

        t] == ((1 +  

             2 (ux[t]^2 +  

                uy[t]^2))* (-((m1 (x[t] - pt1[[1]]))/((x[t] -  

                   pt1[[1]])^2 + (-pt1[[2]] + y[t])^2)^(3/2))) -  

                       ux[t]*(ux[ 

               t] (-((m1 (-pt1[[1]] + x[t]))/((-pt1[[1]] +  

                    x[t])^2 + (-pt1[[2]] + y[t])^2)^(3/2))) + 

                 uy[t] (-((m1 (-pt1[[2]] + y[t]))/((-pt1[[1]] +  

                    x[t])^2 + (-pt1[[2]] + y[t])^2)^(3/2)))))/ ((1 +  

            m1/Sqrt[(x[t] - pt1[[1]])^2 + (y[t] - pt1[[2]])^2])^2), 

            uy'[ 

        t] == ((1 +  

             2 (ux[t]^2 +  

                uy[t]^2))* (-((m1 (-pt1[[2]] + y[t]))/((-pt1[[1]] +  

                   x[t])^2 + (-pt1[[2]] + y[t])^2)^(3/2))) -  

                ux[t]*(ux[ 
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               t] (-((m1 (-pt1[[1]] + x[t]))/((-pt1[[1]] +  

                    x[t])^2 + (-pt1[[2]] + y[t])^2)^(3/2))) + 

                         uy[t] (-((m1 (-pt1[[2]] + y[t]))/((-pt1[[1]] +  

                    x[t])^2 + (-pt1[[2]] + y[t])^2)^(3/2)))))/ ((1 +  

            m1/Sqrt[(x[t] - pt1[[1]])^2 + (y[t] - pt1[[2]])^2])^2), 

       

      x[0] == xi, y[0] == yi , ux[0] == ux0, uy[0] == uy0}, {x[t],  

      y[t], ux[t], uy[t]}, {t, 0, 200},  

     "ExtrapolationHandler" -> {Indeterminate &}]]; 

   trajectoryplot =  

   ParametricPlot[Evaluate[{x[t], y[t]} /. sol[m1, pt1]], {t, 0, 200}, 

      PlotStyle -> {{Hue[color], Dashed, Thickness[0.01]}}] /.  

    Line[x_] :> {Arrowheads[{0.04, 0}], Arrow[x]}; 

  blackhole1 =  

   Graphics[{ Opacity[.7], Black, PointSize[point1[m1]], Point[pt1]}]; 

    Show[backgroundPlot[pt1, pt2, check], trajectoryplot, blackhole1,  

   blackhole2, PlotRange -> {{-8, 8}, {-8, 8}}]], 

 {{xi, 0, Row[{"initial ", Style["x", Italic], " position"}]}, -8,  

  8, .1, ImageSize -> Tiny, Appearance -> "Labeled"}, 

 {{yi, 0, Row[{"initial ", Style["y", Italic], " position"}]}, -8,  

  8, .1, ImageSize -> Tiny, Appearance -> "Labeled"}, Delimiter,  

 {{ux0, 0, Row[{"initial ", Style["x", Italic], " momentum"}]}, -10,  

  10, .1, ImageSize -> Tiny, Appearance -> "Labeled"}, 

 {{uy0, 0, Row[{"initial ", Style["y", Italic], " momentum"}]}, -10,  

  10, .1, ImageSize -> Tiny, Appearance -> "Labeled"}, Delimiter, 

 {{m1, 1, "mass black hole 1"}, 1, 10, 1, ImageSize -> Large,  

  Appearance -> "Labeled"}, 
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 Delimiter, 

 Style["location of black holes"], 

 {{pt1, {0, 1}, "black hole 1"}, {-8, -8}, {8, 8}, ImageSize -> Small}, 

  Delimiter, 

 {{check, False, "show density plot?"}, {True, False}}, 

 {{color, .5, "trajectory color"}, .01, 1, ImageSize -> Tiny}, 

 SynchronousUpdating -> False, 

 SaveDefinitions -> True,  

 TrackedSymbols :> {xi, yi, Delimiter, ux0, uy0, Delimiter, m1, m2,  

   Delimiter, pt1, pt2, check, color} 

 ] 
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Appendix F 

When a massive spinning body become black hole, it keep spinning. As Big Bang suggests after 13.2 

billion years of initial event galaxies were formed. The different mass were combined and formed the 

galaxy, the galaxy was formed due to presence of very high gravitational force efficient enough to bond 

billions of star systems. As observed and calculated it came up, that the galaxy is centred by Massive 

black hole spinning in the galactic centre. 

The black hole which precisely define the galactic black hole id Kerr-Newman Black hole. The difference 

between the Kerr Black hole and Kerr Newman Black hole is that they have charged particles in them 

which makes there simulation difficult. So In order to study the effect of the black hole on their host 

galaxies. We simulated the Kerr Black hole and studied its effect, excluding the charged particles effect. 

For the study of the Kerr Black hole we needed to a modified classical mechanics. We used Hamiltonian 

Mechanics 

 

Lagrangian and Hamiltonian Mechanics 

According to Newton's laws, the incremental work dW done by a force f on a particle moving 

an incremental distance dx, dy, dz in 3-dimensional space is given by the dot product 

 

Now suppose the particle is constrained in such a way that its position has only two degrees of 

freedom. In other words, there are two generalized position coordinates X and Y such that the 

position coordinates x, y, and z of the particle are each strictly functions of these two 

generalized coordinates. We can then define a generalized force F with the components FX and 

FY such that 

 

The total differentials of x, y, and z are then given by 
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Substituting these differentials into (1) and collecting terms by dX and dY, we have 

 

Comparing this with (2), we see that the generalized force components are given by 

 

Now, according to Newton's second law of motion, the individual components of force for a 

particle of mass m are 

 

Substituting into the expression for FX gives 

 

and similarly for FY.  Notice that the first product on the right side can be expanded as 

 

and similarly for the other two products. Since x and X are both strictly functions of t, it follows 

that partial differentiation with respect to t is the same as total differentiation, and so the order 

of differentiation in the right-most term of (4) can be reversed (because partial differentiation is 

commutative). Hence (4) can be written as 

 

Substituting this (and the corresponding expressions for the other two products) into equation 

(3), we get 
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Variations in x,y,z and X at constant t are independent of t (since each of these variables is 

strictly a function of t), so we have 

 

Making these substitutions into (5) gives 

 

Each term now contains an expression of the form r(r/s), which can also be written 

as (r2/2)/s, so the overall expression can be re-written as 

 

The quantity inside the square brackets is simply the kinetic energy, conventionally denoted by 

T. Thus the generalized force FX, and similarly the generalized force FY, can be expressed as 

 

These are the Euler-Lagrange equations of motion, which are equivalent to Newton's laws of 

motion.  (Notice that if X is identified with x in equation (5), then FX reduces to Newton's 

expression for fx, and likewise for the other components.) 

  

If the total energy is conserved, then the work done on the particle must be converted to 

potential energy, conventionally denoted by V, which must be purely a function of the spatial 

coordinates x,y,z, or equivalently a function of the generalized configuration coordinates X,Y, 

and possibly the derivatives of these coordinates, but independent of the time t. (The 

independence of the Lagrangian with respect to the time coordinate for a process in which 

energy is conserved is an example of Noether's theorem, which asserts that any conserved 

quantity, such as energy, corresponds to a symmetry, i.e., the independence of a system with 

respect to a particular variable, such as time.) If the potential depends on the derivatives of the 

position coordinates it is said to be a velocity-dependent potential, as discussed in the note 
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on Gerber’s Gravity. However, most potentials depend only on the position coordinates and not 

on their derivatives. In that case we have 

 

Comparing this with equation (2), we see that 

 

and therefore the Euler-Lagrange equations (6) for conservative systems can be written as 

 

Rearranging terms, we have 

 

Furthermore, since V is purely a function of the configuration variables, independent of their 

rates of change, we can just as well substitute (TV) in place of T on the right sides of these 

equations, so in terms of the parameter L = T  V these equations can be written simply as 

 

The quantity L is called the Lagrangian. This derivation was carried out for a single particle 

moving with two degrees of freedom in three-dimensional space, but the same derivation can be 

applied to collections of any number of particles. For a set of N particles there are 3N 

configuration coordinates, but the degrees of freedom will often be much less, especially if the 

particles form rigid bodies. Letting q1, q2, .., qn denote a set of generalized configuration 

coordinates for a conservative physical system with n degrees of freedom, the equations of 

motion of the system are 
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Where L is the Lagrangian of the system, i.e., the difference between the kinetic and the 

potential energies, expressed in terms of the generalized coordinates and their time derivatives. 

These equations are usually credited jointly to Euler along with Lagrange, because although 

Lagrange was the first to formulate them specifically as the equations of motion, they were 

previously derived by Euler as the conditions under which a point passes from one specified 

place and time to another in such a way that the integral of a given function L with respect to 

time is stationary. (Roughly speaking, "stationary" means that the value of the integral does not 

change for incremental variations in the path.) This is a fundamental result in the calculus of 

variations, and can be applied to fairly arbitrary functions L (i.e., not necessarily the 

Lagrangian). For a derivation of the Euler conditions. 

To illustrate the application of these equations, consider a simple mass-spring system, 

consisting of a particle of mass m on the x axis attached to the end of a massless spring with 

spring constant k and null point at x = 0.  For any position x, the spring exerts a force equal to F 

= kx, and the potential energy is the integral of force with respect to displacement. Similarly the 

kinetic energy is the integral of the inertial force F = ma with respect to displacement. Thus the 

kinetic and potential energies of the system are 

 

Therefore the Lagrangian of the system is 

 

The partial derivatives are 

 

Substituting into Lagrange's equation, we get the familiar equation of harmonic motion for a 

mass-spring system 
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Of course, this simply expresses Newton's second law, F = ma, for the particle.  It's also 

equivalent to the fact that the total energy E = T + V is constant, as can be seen by 

differentiating E with respect to t and then dividing through by dx/dt.  

The equivalence between the Lagrangian equation of motion (for conservative systems) and the 

conservation of energy is a general consequence of the fact that the kinetic energy of a particle 

is strictly proportional to the square of the particle's velocity. Of course, in terms of the 

generalized parameters, it's possible for the kinetic energy to be a function of both q and  but 

since the transformation dx = (x/q)dq between x and q is equivalent to dx/dt = (x/q)dq/dt, it 

follows that for a fixed configuration the kinetic energy is proportional to the squares of the 

generalized velocity parameters. Therefore, in general, we have 

 

where we've made use of the fact that the potential energy V (for conservative systems) is 

independent of .  Now, the total energy is E = T + V = 2T  L, so the conservation of energy 

can be expressed in the form 

 

The two terms on the right hand side can be expanded as 

 

Substituting into the previous equation and dividing through by  (applying analytic 

continuation to remove the singularity when  = 0), we see that the conservation of energy 

implies 
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which is just Lagrange's equation of motion. Of course, the same derivation applies to any 

number of particles, and their generalized coordinates. 

The correspondence between the conservation of energy and the Lagrangian equations of 

motion suggests that there might be a convenient variational formulation of mechanics in terms 

of the total energy E = T + V (as opposed to the Lagrangian L = T  V). Notice that the partial 

derivative of L with respect to x' is the momentum of the particle. In general, given the 

Lagrangian, we can define the generalized momenta as 

 

(The partial of V is zero, so it's inclusion and sign in this definition is a matter of convention.) 

Thus to each generalized configuration coordinate qj there corresponds a generalized momenta 

pj. In our simple mass-spring example with the single generalized coordinate q = x, the total 

energy H = T + V in terms of these conjugate parameters is 

 

The function H(q,p) is called the Hamiltonian of the system. Taking the partial derivatives of H 

with respect to p and q, we have 

 

Notice that, in this example, p/m equals q' (essentially by definition, since p = mv), and kq 

equals -p' (by the equation of motion). In general it can be shown that, for any conservative 

system with generalized coordinates qj and the corresponding momenta pj, if we express the 

total energy H in terms of the qj and pj, then we have 
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Appendix G – Time Dilation around a Black Hole 

Manipulate[ 

  G  = 1; 

  M  = 1; 

  orbitEnergy = -  (1/r0)   +  (L^2)/( 2 r0^2) - L^2/r0^3; 

  anOrbitSolution = 

  Quiet@NDSolve[ 

    { 

     r''[\[Tau]] == -( G M/ r[\[Tau]]^2) + (L^2/  

         r[\[Tau]]^3) - (3 G M L^2/r[\[Tau]]^4) , 

            r[0] == r0, 

            r'[0] == 0, 

          \[Phi]'[\[Tau]] == L/ r[\[Tau]]^2, 

          \[Phi][0] == 0, 

          t'[\[Tau]] == \[Sqrt]( (r[\[Tau]]/ ( r[\[Tau]] - 2 G M )) + 

                  (r'[\[Tau]]^2  r[\[Tau]]^2/( r[\[Tau]] - 2 G M )^2)  + 

                   (  

          r[\[Tau]]^3 \[Phi]'[\[Tau]]^2 / ( r[\[Tau]] - 2 G M ))   ) , 

           t[0] == 0 

          }, 

        {r, \[Phi], t}, 

        {\[Tau], 0, pT} 

        ]; 

  domain = 

                                   (r /. anOrbitSolution[[1, 1]])[ 

   "Domain"]; 
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  {begin, end} = 

                                    domain[[1]]; 

 angleList =  

                                     \[Phi][end] /. anOrbitSolution ; 

 If[symmetricOrbit == 0, 

  windingNumber = angleList[[1]]/(2 \[Pi]);, 

  windingNumber = angleList[[1]]/ \[Pi]; 

  ]; 

  timeDilation  = (t[end] /. anOrbitSolution)[[1]]/end ; 

  anOrbitPlot = 

  ParametricPlot[ 

   Evaluate[ 

    r[\[Tau]] {Cos[\[Phi][\[Tau]]], Sin[\[Phi][\[Tau]]]} 

     /. anOrbitSolution], 

   {\[Tau], begin, end}, 

   (*PlotPoints\[Rule]1000,*) 

   AspectRatio -> 1, 

   AxesOrigin -> {0, 0}, 

   PlotRange -> scale]; 

  anOrbitPlotReversed = 

  ParametricPlot[ 

   Evaluate[ 

    r[\[Tau]] {Cos[\[Phi][\[Tau]]], -Sin[\[Phi][\[Tau]]]} 

     /. anOrbitSolution], 

   {\[Tau], begin, end}, 

   (*PlotPoints\[Rule]1000,*) 

   AspectRatio -> 1, 
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   AxesOrigin -> {0, 0}, 

   PlotRange -> scale];  sRadius =   Graphics[Disk[{0, 0}, 2]]; 

  If[symmetricOrbit == 1, 

    Show[   {    anOrbitPlot,    anOrbitPlotReversed, 

     sRadius, 

    Graphics[ 

     {      Inset[       ToString[        StringForm[ 

         "winding number  ``", windingNumber]], 

       {-25, 35} scale/38], 

      Inset[ 

       ToString[ 

        StringForm[ 

         "time dilation       ``", timeDilation]], 

       {-25, 32} scale/38], 

      Inset[       ToString[        StringForm[         "orbit energy \[Times] 100      ``", 100 orbitEnergy]], 

       {22, 35} scale/38] 

      }                    ] 

    }, Ticks -> None, ImageSize -> {400, 400}], 

    Show[ 

   {    anOrbitPlot,     sRadius,    Graphics[     {      Inset[       ToString[        StringForm[ 

         "winding number  ``", windingNumber]], 

       {-25, 35} scale/38], 

      Inset[ 

       ToString[        StringForm[         "time dilation       ``", timeDilation]], 

       {-25, 32} scale/38], 

      Inset[ 

       ToString[ 
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        StringForm[ 

         "orbit energy \[Times] 100      ``", 100 orbitEnergy]], 

       {22, 35} scale/38] 

      }] 

    }, Ticks -> None, ImageSize -> {400, 400}] 

  ], 

 {{L , 4, "angular momentum"}, 1/10, 100, ImageSize -> Tiny}, 

 {{r0, 31.6, "initial radius"}, 2.5, 50, ImageSize -> Tiny}, 

 {{pT, 4850, "proper time"}, 1, 10000, ImageSize -> Tiny}, 

 {{scale, 37.8, "view"}, 5, 100, ImageSize -> Tiny}, 

 {{symmetricOrbit, 0, "symmetric orbit"}, {0, 1},  

  ControlType -> Checkbox}, 

 SynchronousUpdating -> False, ControlPlacement -> Left,  

 TrackedSymbols -> Manipulate] 
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